

# **Overview of CPS Assessments**

Theme 1 – Scientific/technical approach for assessing status of CPS fish stocks

# **NOAA**FISHERIES

P. R. Crone NOAA/SWFSC/FRD 8901 La Jolla Shores Dr. La Jolla, CA 92037, USA Email: Paul.Crone@noaa.gov

**Tel**: 858-546-7069



29 July 2014

## **Presentation outline**

- Stocks CPS assemblage inhabiting California Current Ecosystem
- Management CPS FMP (actively managed vs. monitored stocks)
- Assessment histories and present schedules
- Assessment process (others)
  - Documentation, technical review, Council deliberations
- Assessment goals/data/models (benchmark assessments)
  - Fishery/survey/biology/ecosystem sample data
  - Model parameter assumptions, estimation, uncertainty
- Research in support of stock assessments
- Assessment strengths, challenges, and strategies for improving





# CPS fisheries, assessment, management



### P. sardine

- Active management
- Assessed annually
- Benchmark every 2<sup>nd</sup> yr
- Update in interim years
- High-volume fishery



### P. mackerel

- Active management
- Benchmark every 4<sup>th</sup> yr
- Harvest specs for 2-yr period
- Projection estimate in 2<sup>nd</sup> interim yr
- Low-volume fishery
- Minor species in sport fishery



#### N. anchovy (central sub-stock)

- Monitored management
- Low-volume fishery
- Last assessed in 1995



#### N. anchovy (northern sub-stock)

- Monitored management
- Low-volume fishery
- Never formally assessed



#### J. mackerel

- Monitored management
- Low-volume fishery
- Never formally assessed



#### M. squid

- Monitored management
- Active management CA FMP
- High-volume fishery
- Not formally assessed
- Egg escapement method (per-recruit)



## CPS benchmark assessments – Goals, data, models

- Assessment goal
  - Bottom-line deliverable = current estimate of total stock abundance
  - o No estimates needed for unfished/virgin stock, MSY, fishing rate
- Fishery-dependent data
  - o Fishery operations and associated sample data have changed
  - o Commercial: catch, sex, length/weight, age, maturity
  - o Recreational: catch, CPFV logbook, RecFIN/CRFS statistics (CPUE, length)
  - Spatial coverage very limited relative to stock distributions at large
- Fishery-independent data
  - Surveys have changed
  - SWFSC acoustic-trawl method (ATM) survey: Spring (DEPM) and Summer (SaKe)
  - SWFSC CalCOFI survey (eggs/larvae): Daily Egg Production Method (DEPM)
  - Other surveys (not used): Northwest aerial, NWFSC/SWFSC forage fish, Canada DFO trawl, IMECOCAL eggs/larvae, SWFSC juvenile rockfish survey
- Models for CPS assessments
  - o Models have changed (age-structured models, mid 1990s-present)
    - ✓ P. sardine: CANSAR→CANSAR-TAM→ASAP→SS
    - ✓ P. mackerel: ADEPT→ASAP→SS



### P. sardine

- Catch
  - ✓ Commercial (USA, MEX, CAN)
- Indices of abundance
  - ✓ Acoustic-trawl method survey (ATM) 2
  - ✓ CalCOFI survey –2
- Biological compositions
  - ✓ Length
  - ✓ Conditional age-at-length (CAAL)
- Biology parameters
  - ✓ Weight-length, length-at-age, maturity

### P. mackerel

- Catch
  - ✓ Commercial (USA, MEX)
  - √ Recreational (USA)
- Indices of abundance
  - ✓ CPFV logbook recreational
  - ✓ CRFS other recreational fishing modes
- Biological compositions
  - √ Age (commercial)
  - ✓ Length (recreational)
  - ✓ Mean size-at-age
- Biology parameters
  - ✓ Weight-length, length-at-age, maturity



### P. sardine





## P. sardine – Catch



## P. sardine – Survey history

|      |            | SURVEY DATA |            |           |          |         |        |          |
|------|------------|-------------|------------|-----------|----------|---------|--------|----------|
|      |            |             |            | CalCOFI % |          |         |        |          |
|      |            | Daily Egg   |            | Positive  |          | Aerial  | NWSS   | Acoustic |
|      |            | Production  | Total Egg  | (Eggs &   | Spawning | Spotter | Aerial | Trawl    |
| YEAR | MODEL      | Method      | Production | Larvae)   | Area     | Logbook | Survey | Method   |
| 1996 | CANSAR     |             |            |           |          |         |        |          |
| 1997 | CANSAR     |             |            |           |          |         |        |          |
| 1998 | CANSAR-TAM |             |            |           |          |         |        |          |
| 1999 | CANSAR-TAM |             |            |           |          |         |        |          |
| 2000 | CANSAR-TAM |             |            |           |          |         |        |          |
| 2001 | CANSAR-TAM |             |            |           |          |         |        |          |
| 2002 | CANSAR-TAM |             |            |           |          |         |        |          |
| 2003 | CANSAR-TAM |             |            |           |          |         |        |          |
| 2004 | ASAP       |             |            |           |          |         |        |          |
| 2005 | ASAP       |             |            |           |          |         |        |          |
| 2006 | ASAP       |             |            |           |          |         |        |          |
| 2007 | SS         |             |            |           |          |         |        |          |
| 2008 | SS         |             |            |           |          |         |        |          |
| 2009 | SS         |             |            |           |          |         |        |          |
| 2010 | SS         |             |            |           |          |         |        |          |
| 2011 | SS         |             |            |           |          |         |        |          |
| 2012 | SS         |             |            |           |          |         |        |          |
| 2013 | SS         |             |            |           |          |         |        |          |
| 2014 | SS         |             |            |           |          |         |        |          |



P. sardine – Survey indices



Year

## P. sardine – Survey indices





P. sardine – Length compositions







Length (cm)

**Proportion** 

P. sardine – Conditional age-at-length (CAAL) compositions



MexCal\_S2



P. sardine – Biology







### Summary

- Catch
  - ✓ High quality USA/CAN
  - ✓ Some uncertainty/timeliness issues MEX
  - ✓ Catch based on environmentally driven sub-stock distributions highlights additional uncertainty

#### Indices of abundance

- ✓ Good quality
- ✓ ATM (P. sardine) most representative, informative, defendable (highest priority in future)
- ✓ ATM (other CPS) representativeness uncertain, but best available
- ✓ DEPM/TEP (P. sardine) representativeness uncertain, best index of early life stage strength
- ✓ Recreational (P. mackerel) poor quality, placeholder index presently
- ✓ Ideally, need for coastwide (B.C. to Baja) survey conducted annually/bi-annually

#### Biological compositions

- ✓ Pretty good quality
- ✓ Bias in age estimation needs ongoing scrutiny International WG (small pelagic age reading committee, SPARC)
- ✓ Conflicts between detailed conditional age-at-length compositions and growth/selectivity
- ✓ Compositions not available on a systematic basis MEX

### Biology parameters

- ✓ High quality
- ✓ Laboratory research ongoing, benefits model development to meet assessment goal



## **CPS** benchmark assessments – Models

## **Current assessment models**

### P. sardine

- o Stock Synthesis model
- Time period: 1993-present
- Time step: seasonal (semester)
- Stock structure: single (northern substock)
- Selectivity: length-based, time-varying
- Catchability (q): fixed (ATM), estimated (DEPM/TEP)
- $\circ$  **Spawner-recruit**: Ricker (*h* and  $\sigma_R$  fixed)
- Biology
  - ✓ Combined sexes
  - $\checkmark M$  fixed
  - ✓ Growth estimated
  - ✓ Maturity laboratory
- Data weighting: compositions (CAAL)
- No. estimated parameters: 63
- Major changes to assessment: 2014

### P. mackerel

- Stock Synthesis model
- o Time period: 1983-11
- Time step: annual
- Stock structure: single
- Selectivity: age-based, constant
- Catchability (q): estimated
- $_{\circ}$  Spawner-recruit: B-H (h estimated and  $\sigma_{R}$  fixed)
- Biology
  - ✓ Combined sexes
  - $\checkmark M$  fixed
  - ✓ Growth estimated
  - ✓ Maturity laboratory
- Data weighting: none
- No. estimated parameters: 57
- Major changes to assessment: 2015



## Stock structure – P. sardine

Seasonal distribution of northern and southern substocks (Garcia-Morales et al. 2012)



Stock structure – P. sardine

- Sub-stock differentiation
  - Zwolinski et al. (2011); Demer/Zwolinski (2014)
  - Catch based on optimal/good habitat vs. port
    - ✓ Habitat ≡ SST, chorolphyll-a, sea-surface height
  - Seasonal mixing of northern and southern sub-stocks
  - Year-round landings from Monterey northward solely from northern stock
    - ✓ Northern stock habitat present off Ensenda/San Pedro from Dec-Mar
    - ✓ Southern stock habitat present off Ensenda/San Pedro from May-Nov
    - ✓ Transitions from northern-southern stock habitats during April and vice-versa during Nov-Dec
  - Potentially, in summer months, 2/3 Ensenda catch and 1/3 San Pedro catch from southern stock (2006-11)
  - Bottom-line is reduced F on northern stock (USA managed) and increased F on southern stock (MEX managed)

San Pedro

**Ensenada** 



## Stock structure – P. sardine

Proportion of catch attributed to northern sub-stock using good/optimal habitat method



# **Selectivity – P. sardine**





# **Selectivity – P. sardine**

- Consider age-based
  - Production ageing in place

Most straightforward model

More robust results?





# Spawner-recruit (S-R) – P. sardine

- Beverton-Holt relationship
- Steepness fixed (0.9)
  - o Based on meta-analysis
  - More sensitivity analysis needed
- Environmental covariates
  - Better inform recruitment variability and S/R estimation
  - Large-scale environmental time series
  - o PDO, MEI, NPGO, chlorophyll-a, sea-surface height, ...?





# **Growth - P. sardine**





## **Growth – P. sardine**

- Consider bypassing growth estimation
  - ✓ Parsimonious model to meet assessment goal
  - ✓ Conflicts with modeling selectivity
  - ✓ Use mean weight-at-age (empirical)
  - ✓ Prerequisite is age-based selectivity





## **CPS** benchmark assessments – Models

## Summary

### Stock structure

- ✓ Technical process for delineating northern vs. southern sub-stocks catch based on regional indices of optimal/good potential habitat better than assuming landing port
- ✓ Accommodating in management process may be problematic

#### Growth

- ✓ Revisit use/emphasis of conditional age-at-length data (P. sardine)
- ✓ Consider fixed/empirical mean weight-at-age

### Selectivity

Evaluate utility of more straightforward age-based selectivity

### Spawner-recruit relationship

- ✓ Recruitment ↔ ecosystem ↔ serial correlation
- ✓ Adjustments to S-R relation (expected recruitment) based on environmental indices.



# **CPS** research ← Stock assessments

- Field (Acoustic-trawl method survey)
  - Acoustic equipment specifications, estimation, uncertainty (e.g., target strength/backscatter)
  - Optimal sampling design for small pelagic assemblage
  - Inherent timing constraints for acoustic and trawl sampling

### Laboratory (biology)

- Age/growth/maturity
  - ✓ Otolith microchemistry empirical evidence supporting environment-based stock delineation hypothesis (P. sardine)
  - ✓ Maturity-at-age/size, fecundity/spawning frequency (P. mackerel)
  - ✓ Marginal increment analysis examine birth-date/first-year growth assumptions (P. mackerel, P. sardine, N. anchovy)
  - ✓ Age determination consistency for transboundary stocks SPARC

#### ∘ M. squid

- ✓ Refinements to egg escapement model based on laboratory studies
- ✓ Optimize mantle/gonad preparations for more timely processing
- ✓ Age/growth of paralarvae, juveniles, adults
- Modeling (critical parameters)
  - Good practices past selectivity workshop/papers and upcoming growth workshop (CAPAM)



## M. Squid – Fishery/management, pop dy/assessment

### Fishery/management/assessment



- Largest CPS fishery by volume and ex-vessel value
- Not regularly assessed for setting harvest levels
- Adaptive management currently, includes weekend closures, seasonal landings cap, and spawning refugia (MPAs)
- STAR (2001) resulted in development of the egg escapement method (EEM) based on per recruit theory/application (Macewicz et al. 2004, Maxwell et al. 2005; Dorval et al. 2013)

### Life history data for EEM

- Live approximately 6 months
- o Have determinate (fixed) fecundity
- Lay egg cases in clutches for approximately 2-3 days, and die after spawning (semelparous)
- Calculate potential fecundity: standing stock of oocytes of all stages in the ovary of mature pre-ovulatory females
- Typically harvested on spawning grounds calculate lost spawning potential due to fishing





## M. Squid research – Egg escapement method (EEM)

EEM application – CA fishery study (Dorval et al. 2013)

#### Per recruit conclusions

- ✓ Although variable within region, proportional egg escapement generally higher than 0.30 in most quarters
- Intra-annual variability of recruitment high for some time periods (qtr/ yr), but reproductive success generally increased across quarters within region
- ✓ *S*(*F*) similar across regions, i.e., reproductive processes robust to spatial dynamics exhibited in overall fishery

#### Absolute abundance conclusions

- ✓ Single population that reproduces disproportionately across extensive spatial range
- Absolute abundance derived from fishing mortality inferred from catch fecundity, combined with biological and landing data
- ✓ Biomass can reach over 250,000 mt in single quarter in regions 2-3, biomass much lower in region 1

#### Management implications

- Real-time management not practical, given costly/time consuming based on current laboratory processing methods
- Consider region-specific harvest stipulations, given spatial differences in abundance
- ✓ Implementing based on strict threshold level of escapement (e.g., 30%) over long timeframe less efficient than time-varying target levels, given inter-annual variability of *S*(*F*)
- ✓ Need to develop longer time series before adopting EEM as formal management tool
- Identify environmental indices to inform current more adaptive management efforts



## M. Squid research – EEM (CA fishery study)





## **Good practices – Modeling selectivity in stock assessments**

- Multiple selectivity patterns as a proxy for spatial structure (*fleets as areas* approach) Hurtado-Ferro, Punt, Hill (2014)
  - Simulated analysis P. sardine data
  - o Design:
    - ✓ Represent spatial structure (areas) with different selectivity curves (fleets)
    - ✓ Evaluate spatial factors for largest effect (migration, composition data, sub-stock assumptions, sampling intensity)
  - Ignoring spatial structure/seasonal migration negatively impacts estimation performance
  - Assessment model compensates for ignoring spatial structure by adjusting selectivity curves
  - Estimated current SSB error influenced by varying migration rates
  - Bottom-line ≡ fleets-as-areas captures some of the variance from spatial structure, but cannot account for all biases



### **Good practices – Modeling selectivity in stock assessments**

- Length vs. age compositions and associated selectivity assumptions – Crone/Valero (2014)
  - Simulated analysis P. sardine/P. mackerel data
  - Age-composition data more robust to selectivity misspecification than length-composition data
  - When length data are used, misspecification of selectivity generally produced more variable findings and lower quality estimates for MSY and B<sub>current</sub>

Operating models

Estimates of depletion more precise/robust

Selectivity specification

 ${f A}$ ge-based -  ${f A}$ 

Length-based - I

 ${f A}$ ge-based -  ${f A}$ 

Length-based - L

Biological data

Age - A

Length - L



## **Good practices – Modeling selectivity in stock assessments**

- Selectivity assumptions/data weighting considerations based on likelihood profiling over global scaling parameter – Lee, Piner, Methot, Maunder (2014)
  - Virgin recruitment (R<sub>0</sub>) profiles useful for assessing influence of particular data components on population scale
  - Prioritization of data components based on most reliable data and ability to produce internally consistent model on location of population scale
  - Use of additional model process (time varying, more flexible selectivity patterns), and/or composition weighting improved model performance
  - Adding model process preferred to down-weighting in initial misfit investigations
  - Some stock status conclusions may be relatively robust to misspecification e.g., MSY ratio benchmarks (F/F<sub>MSY</sub>, SSB/SSB<sub>MSY</sub>)







# Where we're at ...

## **CPS landings and abundances**





# Review theme and questions

- Theme 1 Scientific/technical approach for assessing status of CPS fish stocks
  - Is Center using an appropriate suite of analytical methods to meet regional stock assessment objectives?
  - Does the suite of fishery models adequately consider/address/accommodate data-poor to data-rich assessments?
  - Are assessments capable of considering possible ecosystem effects?
  - Does the Center conduct research on analytical methods and assessment model development and contribute to the state-of-the-science nationally and internationally?



# **CPS** assessments

# **Strengths**

- Data-rich P. sardine assessment continues to improve through ongoing development and peer review
- Acoustic-trawl survey and associated research efforts provide most objective time series of abundance available for assessing status of P. sardine and potentially other CPS
- Laboratory research aids understanding of species' biology



## **CPS** assessments

## **Challenges**

- Foremost, need continues for improved relations with Mexico (less so for Canada) and opportunities to survey (collaboratively or independently) transboundary ranges of CPS
- Sample data/time series necessary for benchmark assessments are incomplete/unavailable for monitored CPS stocks
- Identify/incorporate environmental data for informing recruitment estimation in current modeling efforts
- Streamline/standardize CPS assessments to meet management goal
- M. squid monitoring/assessment for advising management on sustainable fishing practices



## **CPS** assessments

## **Strategies**

- Continue to lobby Mexico administration/technical staff concerning need for collaborative survey efforts
- Continue to support long-term investment in acoustic survey operations (biannual, cooperative w/ NWFSC hake survey)
- Design and implement fishery sampling programs for monitored CPS
- Develop data-poor assessments for P. mackerel, N. anchovy, J. mackerel (avg. catch, DCAC, DB-SRA, a4a initiative)
- Focused attention via small working groups
  - Alternative methods for modeling environmental time series in Stock Synthesis
  - MSEs high priority, given ecosystem considerations (merits/drawbacks of data-rich vs. data-moderate models for meeting management goal)
  - Consider management of assemblage vs. species-specific
- Adaptive management along with ecosystem indicators for M. squid

